Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

Advanced Linear Algebra (MA 409)
 Problem Sheet - 10

The Change of Coordinate Matrix

1. Label the following statements as true or false.
(a) Suppose that $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates. Then the j th column of Q is $\left[x_{j}\right]_{\beta^{\prime}}$.
(b) Every change of coordinate matrix is invertible.
(c) Let T be a linear operator on a finite-dimensional vector space V, let β and β^{\prime} be ordered bases for V, and let Q be the change of coordinate matrix that changes β^{\prime} coordinates into β-coordinates. Then $[T]_{\beta}=Q[T]_{\beta^{\prime}} Q^{-1}$.
(d) The matrices $A, B \in M_{n \times n}(F)$ are called similar if $B=Q^{t} A Q$ for some $Q \in M_{n \times n}(F)$.
(e) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for $V,[T]_{\beta}$ is similar to $[T]_{\gamma}$.
2. For each of the following pairs of ordered bases β and β^{\prime} for \mathbb{R}^{2}, find the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates.
(a) $\beta=\left\{e_{1}, e_{2}\right\}$ and $\beta^{\prime}=\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\}$
(b) $\beta=\{(2,5),(-1,-3)\}$ and $\beta^{\prime}=\left\{e_{1}, e_{2}\right\}$
(c) $\beta=\{(-4,3),(2,-1)\}$ and $\beta^{\prime}=\{(2,1),(-4,1)\}$
3. For each of the following pairs of ordered bases β and β^{\prime} for $P_{2}(\mathbb{R})$, find the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates.
(a) $\beta=\left\{x^{2}, x, 1\right\}$ and
$\beta^{\prime}=\left\{a_{2} x^{2}+a_{1} x+a_{0}, b_{2} x^{2}+b_{1} x+b_{0}, c_{2} x^{2}+c_{1} x+c_{0}\right\}$
(b) $\beta=\left\{x^{2}-x+1, x+1, x^{2}+1\right\}$ and
$\beta^{\prime}=\left\{x^{2}+x+4,4 x^{2}-3 x+2,2 x^{2}+3\right\}$
(c) $\beta=\left\{2 x^{2}-x+1, x^{2}+3 x-2,-x^{2}+2 x+1\right\}$ and $\beta^{\prime}=\left\{9 x-9, x^{2}+21 x-2,3 x^{2}+5 x+2\right\}$
4. Let T be the linear operator on \mathbb{R}^{2} defined by

$$
T\binom{a}{b}=\binom{2 a+b}{a-3 b}
$$

let β be the standard ordered basis for \mathbb{R}^{2}, and let

$$
\beta^{\prime}=\left\{\binom{1}{1},\binom{1}{2}\right\} .
$$

Use the fact that

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)^{-1}=\left(\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

to find $[T]_{\beta^{\prime}}$.
5. Let T be the linear operator on $P_{1}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$, the derivative of $p(x)$. Let $\beta=\{1, x\}$ and $\beta^{\prime}=\{1+x, 1-x\}$. Use the fact that

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)^{-1}=\left(\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

to find $[T]_{\beta^{\prime}}$.
6. For each matrix A and ordered basis β, find $\left[L_{A}\right]_{\beta}$. Also, find an invertible matrix Q such that $\left[L_{A}\right]_{\beta}=Q^{-1} A Q$.
(a) $A=\left(\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right)$ and $\beta=\left\{\binom{1}{1},\binom{1}{2}\right\}$
(b) $A=\left(\begin{array}{ccc}13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10\end{array}\right)$ and $\beta=\left\{\left(\begin{array}{r}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$
7. In \mathbb{R}^{2}, let L be the line $y=m x$, where $m \neq 0$. Find an expression for $T(x, y)$, where
(a) T is the reflection of \mathbb{R}^{2} about L.
(b) T is the projection on L along the line perpendicular to L.
8. Let $T: V \rightarrow W$ be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β^{\prime} be ordered bases for V, and let γ and γ^{\prime} be ordered bases for W. Then prove that $[T]_{\beta^{\prime}}^{\gamma^{\prime}}=P^{-1}[T]_{\beta}^{\gamma} Q$, where Q is the matrix that changes β^{\prime}-coordinates into β-coordinates and P is the matrix that changes γ^{\prime}-coordinates into γ-coordinates.
9. Prove that if A and B are similar $n \times n$ matrices, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.

Hint: Use $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and $\operatorname{tr}(A)=\operatorname{tr}\left(A^{t}\right)$.
10. Let V be a finite-dimensional vector space with ordered bases α, β, and γ.
(a) Prove that if Q and R are the change of coordinate matrices that change α-coordinates into β-coordinates and β-coordinates into γ-coordinates, respectively, then $R Q$ is the change of coordinate matrix that changes α-coordinates into γ-coordinates.
(b) Prove that if Q changes α-coordinates into β-coordinates, then Q^{-1} changes β-coordinates into α-coordinates.
11. Let V be a finite-dimensional vector space over a field F, and let $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from F. Define

$$
x_{j}^{\prime}=\sum_{i=1}^{n} Q_{i j} x_{i} \text { for } 1 \leq j \leq n
$$

and set $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. Prove that β^{\prime} is a basis for V and hence that Q is the change of coordinate matrix changing β^{\prime}-coordinates into β-coordinates.
12. Prove that if A and B are each $m \times n$ matrices with entries from a field F, and if there exist invertible $m \times m$ and $n \times n$ matrices P and Q, respectively, such that $B=P^{-1} A Q$, then there exist an n-dimensional vector space V and an m-dimensional vector space W (both over F), ordered bases β and β^{\prime} for V and γ and γ^{\prime} for W, and a linear transformation $T: V \rightarrow W$ such that

$$
A=[T]_{\beta}^{\gamma} \quad \text { and } \quad B=[T]_{\beta^{\prime}}^{\gamma^{\prime}} .
$$

Hints: Let $V=F^{n}, W=F^{m}, T=L_{A}$, and β and γ be the standard ordered bases for F^{n} and F^{m}, respectively. Now apply the results of the above exercise to obtain ordered bases β^{\prime} and γ^{\prime} from β and γ via Q and P, respectively.

